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North and northeast C41wnlaIId  ice discharge from satellite

radar intcrfuumctry

E.J. Rignotl, S.P. Gogineni,  W.H. Krabil],  and S. I’;khol[n

Ice discharge from north aI)cl  northeast GrcenlaI]d calculated using satellite raclar

interferometry  data of fourteeIl  outlet glaciers is 3.5 ti[nes  that estimated from ice-

berg production. ‘I’llcsate]]ite cstiIllatcs,  ol)taitlcc{at tl~cgro~~I~cliI~  gli~]coftheo(ltlct

glaciers, differ  from those obtainecl  at the glacier front  }mxruse basal Inelti  Ilg is ex-

tensive at the underside of the floating glacier scctiolls. ‘J’hc results suggest that the

north ancl northeast parts of tl)c Greclllarld  ice sheet arc thinning  aIld contr ibut ing

positively to sea-level rise.
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‘1’he traditional view on the lllass bala[lce  of tllc  Grcelllalld ice sheet is that accumm

latioll  of mass (mostly snow) in the illtcrior  regiolls  is released to the ocean through

sLlrfa.ce  ablation (or melting) and calvillg  of iccbcrgs  (/). Of all three components of

the mass balance, snow accumu]atio[l  is

measurements across tile  ice sheet (1?).

parativelylimitecl  and restricted to tllc

the best kIlowII  from snow pits ancl icecorcs

Observations of surface lnelt rates arc coIm

w’estcrn  Itlargillal  zone (3). Iceberg calving

is the least-well known (J). lccbcrg  production has been estilnated  in the west (5),

north and northeast (6) by lneans  of re]jcated aerial lJhotograplly.  ‘1’lle \’elocity  of the

calving front is measured by trackillg distinctive patterns of crevasses over tiltlc.  Icc

thickness is cleclLlcecl  froln  tile height of ttle  calving front. Immediately inland of the

calving  front, ice thickness is not well known ( 7), sLlrface features are more sLlbdLlcc],

and locating the gL’oLmding  line, which is where a glacier cletaclles  from its bed to

becolne  afloat in the ocean, is difficL1lt  (8).

Satellite radar interferometry permits a systcnmtic,  detailed, and  precise mapping

of the groLlncling  line of oLltlet  glaciers (9, 10). ‘l]he groLlncling  line is a natLlral

boLlndary  for calcLl]ating  ice discharge becaLlse  the entire ice volLlnle  that crosses it

eventLlally  melts into the ocean. IIere, we lllappcd tile groL[nding line of Ilorth  and

n o r t h e a s t  C;reenlancl  glaciers ( 11 ) (lJig. 1 and 2) Lwiilg  raclar  data froln  the }’;arth

Remote Sensing Satellites (1’URS-I  and 2), and estimated their ice discharge at the

gL’OLIIldillg  line. ‘1’his  part of Greenland includes large sectiolls  of floati[lg  glacicx  ice,

which  are preservec]  becaLlse  of tile 10JV g]acicu slopes, combined ~vit]l t]~c constraining

effect of pernlanellt  sea-ice in the fjords ( f2).

We Llsecl a high-clLlality  digital elevation lnode]  (1)1’;h’1) of llorth Greenland ( 13)  to

estimate the thickness of tile floating glacier sectiolls  ill this region  ass Llnling  that

the glacier ice is in hydrostatic eclLlilibriulll

method, we comparecl  the elevation data to

(1~). ‘J’o assess the accLlracy of the

ice thick  [~ess clata  obtained  by all ice
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sound ing  radar (lSR) ( 15), and laser altimetry clata (AOIJ)  ( 16)  col lected along

single longitudinal profiles crossing the grounding line of the three largest glaciers

(Fig.  2 ancl 3). !l’be comparison shows that hydrostatic ecluilibriunl  is first reached

about 1 to 2 km downstream from the il~terferol~lctrically  -clcli;’e(]  grounding line or

hinge  line (11 ). Near that location, the lJJJM-derived  thickness is Jvithin 10% of the

AOIj-derivecl  thickness and the ISR clata.

Ice discharge was calculated along  profiles located 1 km clownstream  from  the hinge

line and parallel to it as the integral of the procluct  of the I)I~M-derived ice thickness

with the velocity component perpendicular to the grounding line,  Over the float-

ing section of a glacier, the vertical gradient in velocity is negligible ( 17), so the

IW-derived velocities represent vertically integrated velocities. ‘1’lle actual ice ve-

locity vectors were obtainecl  by combining the line of sight componer~t  of the velocity

procurecl  by radar inte:fcrometry  with flow clirec.tion  information prc)viclecl  by the

prominent glacier flow lines in the radar amplitude images  (Fig. 2). The precision of

the measured perpendicular component of the ice velocity is 4% ( 18).

Con~bined  together, tile  analysis implies that the 14 glaciers clischarge  49.2 kn13/yr

of ice into the ocean (10% uncertainty) (l’able 1). ‘1’his  ice volume is 3.5 times that

discharged at the glacier front (6). The largest difference is recordecl  on Petermann

Gletscher, where the grc)unding  line flLlx is ~~ times the glacier front flL]x.

If the floating g]acier  sections arc in steady-state collc]itions,  the ice flL~x c{ec.rease

implies that they are melting ( 19).  If they arc not in steady-state, they sho L[ld

be thickening instead, because not enoLlg]l  ice passing the grounding line reaches the

glacier frollt. AOI, data collected in 1995 ancl 1996011 l)eterlnann  Gletscher,  however,

inclicate  that the glacier  tongue clid llot thickell  at detectable leve]s ( 1 m) over  1 year.

We therefore assume that the ice tongue is in stcacly-state  ancl tile  ice flux decrease

is clLle to melting. On Petermann Gletscllcr, the ir~ferrcd  steady-state melt rate is
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12 m/yr, and peak values cxcccd  20 nl/yr Ilear  the grounding line ( fU).

T’he few observations in north and I]ortheast  (Jreelllalld  suggest that surface melt

rates are less than 3 m/yr (20). l’hc only possible explanation for the ice flux decrease

is then that the ice tongues loose mass through extensive melting at the base of the

glaciers. ]f we assume a surface me]t  rate of 2 In/yr for tllc  floating tongues ( 6), basal

melting must average 10 In/yr  on Peternlann  Glctschcr,  S nl/yr  on hTiogllalvfjerclsbra2,

and 6 m/yr on ‘Zachariae  lsstrom  to cx])]ain tllc  results in ‘1’able 1. ‘1’hese  values arc

high compared to the 1 to 2 m/yr average basal lnclt  rate of Autarctic  ice shelves

(21 ), but comparable to the ]ocaliscd  ]Ligh basa] melt rates (7 to 10 m/yr) mcasLlred

on several Antarctic ticlal  oLltlet  glaciers (22).

‘l’he oLltlet  glaciers of north ancl ]Iortheast Grccnlal~d  will lnaintaill  a state of balance

if the mass discharged at the grounding’ lil~c  is compensated by an eqLlal anloLlnt of

mass accLmlLllating in the interior regions noLlrishing tllcl~l  with glacier ice. over oLlr

stLlc]y  area, the predicted balance groundillg  lille disc] lat’ge is ~] kin :{/yr (g~), which

is less than half the 49-km3/yr  discharge that we measLlrecl  at the grounding  line. If

these estimates are correct, this nlcans  that, north and northeast Greenland glaciers

clischarge  an excess 28 kn13/yr  glacier icc into the ocean, ;vhic]l  is ccluivalellt  to a

~&~t/yr mass 10ss  (with an ice density of ().9] 7) or a ().07-mnl  sea-level rise. ‘1’hc

northern sector of the Greenland Ice Sheet is tllcrcforc tl\illllilLg  a.ncl gives a positive

contrib  Lltion  to sea-level  rise.

OLlr resLdts cannot be cxtrapolatecl easily to the elltim ice sheet because slnal]

floating glacier sections exist elsewhere, for example alo[lg tile western coast (5, 12).

‘l)hese floating sections lllay sti]] gc!llcratc!  laL’ge anloLlllts  of baSal llle]t,  ~vatel bccausc

basal melting is often lnost  pronoLlllced licar  tllc  groLllldillg  line, lvhcrc  ticlal pLl:nping

is most efficient and where the glacier clraft reaches tile  clecpest  waters (21 – 22).
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FIGURE C A P T I O N S

Fig. 1. Location of the 14 outlet glaciers of north and northeast G1eenlancl  ant] the

13RS frames used in this study. ljach 1!1{S scene is 100-kIn2.

Fig. 2. Tidal clisplaccmmnts of the floating scctioll  of (A) Petcrman[l  C;letscher,  (B)

Nioghalvfjerclsbr=, and  (C)  Zachariae lsstmnl  obtaillecl  from cl LladrLll]le-clifferellce

I!RS radar intcrferometry.  Each fringe, or 360° variatioll in phase, represents a 2S mm

displacement of the glacier tongLlc toward tile  raciar lillc of sight (23° away froln

vertical) dLlc to forcing by the ocean tide. ‘1’hc pl[ase  image is modulated by the

radar brightness of the scene. ‘1’hc hinge line, or limit of ticlal flexing, is shown in

clots. I’hc anlplitLlcle of the ticlal clisplacemcnts  raises  clLliclily froln  the  h inge  l i ne

(high fringe rate) and sLlbseclucntly  clecreascx slowly towarcl  the glacier front. ‘l’his

clcformation  pattern agrees  with moclel  preciictions  from an elastic beam clampccl  at

one end on bedrock (hinge line)  anti freely  floating  on the ocean (g~ ). l’he location of

the lSR and AO1, profiles for each glacier is shown in clashes. North  (N) is indicated

by an arrow. Solicl  arrows inclicate  flow clirectioll  parallel to flow lines conspicuous in

the radar anlplitLlclc images. Resiclual  fringes on rock arc caLlsed by imperfections in

the I)EM in areas of high topographic relief.

Fig. 3. Ice thickness clcrivccl  from laser altimetry (AO1,),  ice soLlllcling  raclar  (1 S1{),

atlcl  sLlrface  clcvatiol~ (K MS) neat the grou[lcling  line (G1,, indicated by an arrow) of

( A )  Pctcrmann  Glctscher; (B) Niogllal\fjc*clsl,rm ; ancl (C) Ylachariae Isstrom,  as a

fu[lction of the clistance  along  tllc profile. North (N) is inclicatcc]  by an arrow. l’hc

precision of the KMS  elevation, AOI,  elcvatioll, ancl 1S1{ thickness is, respectively, 10

to 20 m (13), 10 cm (16), ancl 10 n) (1(5). Georefercncillg of the 1’;1{S clata is accLlratc

to within SO m. ‘1’hc  AO1,/ISl{  profile  for Niogllalvfjt~rcls}~ra  is not optimal  becaLlsc

too close to the ice margill  ancl allnost ~Jarallel  to the groLlncling  line (1’’ig. 2). ‘1’lle

(l
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AOI,-  and KNIS-clcrived  thickllcsscs  calculated upstream (south) of the grounding lillc

are in error because the glacier ice is not  ill hydrostatic equilibrium.
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Table 1. Glacier width (W), average velocity (V), average
thickness (g’), grounding line ice flux (Gl”),  and calving  flux
(Cl’) from (6) and (Cl”) from (!5) for the outlet glaciers in
Fig.  1.  W, V and T for Ostcnfeld and Ilrikkerne  Gletscher
are for the main glacier branch only. ~]llccrtaillties  in ice
thickness greater than 10% are clenoted  with ~. “J’he last line
indicates total ice discharge.

(;lacier W v q’ ~~ ~~i’
km nl/yl’ 111 kn13/yr  km3/yr

Petermann G1. 20.5 1139 614

Steensby  C;l. 3.4 329 5’17
Rycler  G1. ~a~) 506 59s

Ostcnfeld  G1. 7.6 667 54’1
}Iarcler Glo 4.5 187 340

}Irikkerne (21. 3.s 3&l 160
J ungersen  G1. 1.5 3 9 5  340~

Naravana I+ ’j. G1. 1.8 5 9  2oo~
IIensc)n (;1. 2.2 286 1 2 3 j

Marie Sophie G1. 3.3 40 136
Academy G1. 74 ~$)o ] ~o

IIagcn I]rae G1. 70 111 731
Nioghalvfj.  G1. ~],5 ] oyz 771
Zachariae Is. 19.8 85<5 ~<1 ~

13.~o

0.63
2.55
2.71
0.34
().44
().2()
().()2

0.0s
().()2
o.~~

0.64
1!5.74
l~40

0.,59
().~~
0.70
0.54
0.03
0.37
0.10
0.01
0.04
0.13
0.14
0.36

~.go*

?.’lo*
‘ 4 9 . 2 1 3 . 5

—. —— —.
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